Everything you wanted to know about image tagging, tag refinement and social image retrieval. Our paper has been (finally) accepted to ACM Computing Surveys! This is a titanic effort, by Xirong Li, Tiberio Uricchio, myself, Marco Bertini, Cees Snoek and Alberto Del Bimbo, to structure the growing literature in the field, understand the ingredients of the main works, clarify their connections and difference, and recognize their merits and limitations.
A pre-print is available on arXiv and the source code is on GitHub.
Our paper “A Data-Driven Approach for Tag Refinement and Localization in Web Videos”, by myself, Marco Bertini, Giuseppe Serra, Alberto Del Bimbo, has been accepted for publication in Computer Vision and Image Understanding (CVIU) and is now available online.
Alberto Del Bimbo has been also invited to present our work at the Workshop on Large-Scale Video Search and Mining at CVPR 2015.
Estimating the relevance of a specific tag with respect to the visual content of a given image and video has become the key problem in order to have reliable and objective tags. With video tag localization is also required to index and access video content properly. In this paper, we present a data-driven approach for automatic video annotation by expanding the original tags through images retrieved from photo-sharing website, like Flickr, and search engines such as Google or Bing. Compared to previous approaches that require training classifiers for each tag, our approach has few parameters and permits open vocabulary.
Last friday I visited Fei-Fei Li’s Vision Lab at Stanford University and I had the pleasure of giving a very informal talk on our ongoing works on social media annotation. The slides of the talk are available online.
Our ICME 2013 paper “An evaluation of nearest-neighbor methods for tag refinement” by Tiberio Uricchio, Lamberto Ballan, Marco Bertini and Alberto Del Bimbo is now available online.
The success of media sharing and social networks has led to the availability of extremely large quantities of images that are tagged by users. The need of methods to manage efficiently and effectively the combination of media and metadata poses significant challenges. In particular, automatic image annotation of social images has become an important research topic for the multimedia community. In this paper we propose and thoroughly evaluate the use of nearest-neighbor methods for tag refinement and we report an extensive and rigorous evaluation using two standard large-scale datasets.