A Cross-media Model for Automatic Image Annotation
Our ICMR 2014 full paper “A Cross-media Model for Automatic Image Annotation” by Lamberto Ballan, Tiberio Uricchio, Lorenzo Seidenari and Alberto Del Bimbo has been accepted for oral presentation and it is now available online.
Automatic image annotation is still an important open problem in multimedia and computer vision. The success of media sharing websites has led to the availability of large collections of images tagged with human-provided labels. Many approaches previously proposed in the literature do not accurately capture the intricate dependencies between image content and annotations. We propose a learning procedure based on KCCA which finds a mapping between visual and textual words by projecting them into a latent meaning space. The learned mapping is then used to annotate new images using advanced nearest-neighbor voting methods.